26 research outputs found

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    IANS: Intelligibility-aware Null-steering Beamforming for Dual-Microphone Arrays

    Full text link
    Beamforming techniques are popular in speech-related applications due to their effective spatial filtering capabilities. Nonetheless, conventional beamforming techniques generally depend heavily on either the target's direction-of-arrival (DOA), relative transfer function (RTF) or covariance matrix. This paper presents a new approach, the intelligibility-aware null-steering (IANS) beamforming framework, which uses the STOI-Net intelligibility prediction model to improve speech intelligibility without prior knowledge of the speech signal parameters mentioned earlier. The IANS framework combines a null-steering beamformer (NSBF) to generate a set of beamformed outputs, and STOI-Net, to determine the optimal result. Experimental results indicate that IANS can produce intelligibility-enhanced signals using a small dual-microphone array. The results are comparable to those obtained by null-steering beamformers with given knowledge of DOAs.Comment: Preprint submitted to IEEE MLSP 202

    Time-Domain Multi-modal Bone/air Conducted Speech Enhancement

    Full text link
    Previous studies have proven that integrating video signals, as a complementary modality, can facilitate improved performance for speech enhancement (SE). However, video clips usually contain large amounts of data and pose a high cost in terms of computational resources and thus may complicate the SE system. As an alternative source, a bone-conducted speech signal has a moderate data size while manifesting speech-phoneme structures, and thus complements its air-conducted counterpart. In this study, we propose a novel multi-modal SE structure in the time domain that leverages bone- and air-conducted signals. In addition, we examine two ensemble-learning-based strategies, early fusion (EF) and late fusion (LF), to integrate the two types of speech signals, and adopt a deep learning-based fully convolutional network to conduct the enhancement. The experiment results on the Mandarin corpus indicate that this newly presented multi-modal (integrating bone- and air-conducted signals) SE structure significantly outperforms the single-source SE counterparts (with a bone- or air-conducted signal only) in various speech evaluation metrics. In addition, the adoption of an LF strategy other than an EF in this novel SE multi-modal structure achieves better results.Comment: multi-modal, bone/air-conducted signals, speech enhancement, fully convolutional networ
    corecore